0=9q^2-15+4

Simple and best practice solution for 0=9q^2-15+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=9q^2-15+4 equation:



0=9q^2-15+4
We move all terms to the left:
0-(9q^2-15+4)=0
We add all the numbers together, and all the variables
-(9q^2-15+4)=0
We get rid of parentheses
-9q^2+15-4=0
We add all the numbers together, and all the variables
-9q^2+11=0
a = -9; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-9)·11
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*-9}=\frac{0-6\sqrt{11}}{-18} =-\frac{6\sqrt{11}}{-18} =-\frac{\sqrt{11}}{-3} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*-9}=\frac{0+6\sqrt{11}}{-18} =\frac{6\sqrt{11}}{-18} =\frac{\sqrt{11}}{-3} $

See similar equations:

| 3d-12=d+10 | | 42=7x+36 | | 5-3m=-19 | | 10z-20=4z+16 | | 3x–3+2x–1=4x+1–x | | 8u-34=u+29 | | 9-4n=-11 | | 9+2x=84 | | 2x+3=4x+22x+3=4x+2 | | |x|=58.1 | | 2x=8=x+12 | | 5/6y=5/14 | | 10b-13=4b+11 | | 3g+5=21 | | 9x-8+x+10+x+21=180 | | 8t+2t^-2=0 | | 2x+x+x+28=180 | | x+8=5x+1x+8=5x+1 | | 2/x+7=-7 | | 2y+13=3y+2 | | 3s+2=2s-5 | | )7z–3=6+z | | 5+2d=10+d | | 4x+3=3x+¹2 | | 7y+5=5y+3 | | x^2-16x-20=3 | | Y=96÷x | | 6x+5=5x+25 | | 4(x+8)=19 | | 5x–7=43 | | 16=4(x8) | | 34/5x-21/2x=-10 |

Equations solver categories